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Introduction and some Terminology
What is heat? Heat is a form of energy that can be transferred from one object

to another or even created at the expense of the loss of other forms of energy.

What is Temperature? Temperature is a measure of the ability of a substance,

or more generally of any physical system, to transfer heat energy to another

physical system.

What is thermodynamics?
• The study of the relationship between work, heat, and energy.

• Deals with the conversion of energy from one form to another.

• Deals with the interaction of a system and it surroundings.

Or

• Thermodynamics, is a science of the relationship between heat, work,

temperature and energy . In broad terms, thermodynamics deals with the

transfer of energy from one place to another and from one form to another.

The key concept is that heat is a form of energy corresponding to a definite

amount of mechanical work.
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Introduction and some Terminology
What is difference between Isothermal Process and adiabatic Process?

Isothermal process Adiabatic process

Isothermal process is defined as one 
of the thermodynamic processes 
which occurs at a constant 
temperature

Adiabatic process is defined as one of the 
thermodynamic processes which occurs 
without any heat transfer between the 
system and the surrounding

Work done is due to the change in 
the net heat content in the system

Work done is due to the change in its 
internal energy

The temperature cannot be varied The temperature can be varied

There is transfer of heat There is no transfer of heat
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0th Law 1st Law 2nd Law 3rd Law

Defines 
Temperature

Defines the Energy Defines Flow of 
Energy & Concept 
of Entropy

Numerical Value of 
Entropy and 
absolute 
temperature

Introduction and some Terminology

Thermodynamic system: a quantity of fixed mass under investigation,

• System boundary: interface separating system 

and surroundings

• Universe: combination of system and surroundings.

• Surroundings: everything external to the system
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Property Definition Symbol
S.I.Unit

Volume Volume of a substance V m3

Internal Energy
The translational, rotational 

and vibrational kinetic 
energy of a substance

U Joules (J)

Enthalpy U + PV
H Joules (J)

Entropy

The entropy is a measure 
of the lack of structure or 
the amount of disorder in a 

system

S Joules/Kelvin (J / 
K)
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Systems can be classified as:
• Open: mass and energy can be transferred between 

system and surroundings
• Closed: energy can be transferred but not mass
• Isolated: Neither energy nor mass can be transferred 

between system and surroundings

A Closed system (a controlled mass) consists of a fixed amount of mass, 
and no mass can cross its boundary. That is, no mass enters or leave 
a closed system. 

such as,  Piston-cylinder device

An Open system (or a control volume ) is a properly selected region in 
space. Both mass and energy can cross the boundary of a control volume.

such as, A Water heater, a turbine and a   compressor, etc

Introduction and some Terminology
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Refrigerator, Clausius Statement of the Second Law:

• heat engine is a device through which a working substance is taken

through a cycle in such a direction that some heat is absorbed

while the temperature is high, a smaller amount is rejected at a

lower temperature, and a net amount of work is done on the

outside.

• If we imagine a cycle performed in a direction reverse to that of 

an engine, the net result would be the absorption of some heat at 

a low temperature, the rejection of a larger amount at a higher 

temperature, and a net amount of work done on the working 

substance. 

• A device that perform a cycle in this direction is called a 

refrigerator, and the working substance is called a refrigerant.
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Hot Reservoir at Temp T1

Cold Reservoir at Temp T2

T1 > T2

Q1

W

Q2

Hot Reservoir at Temp T1

T1 > T2

Cold Reservoir at Temp T2

W

Q1

Q2

Fig. 1.1 (a) a heat engine and Fig. 1.1 (b) a refrigerator

Refrigerator, Clausius Statement of the Second Law:
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Let the following notation (all positive quantities) refers to one complete cycle.

Q1 = amount of heat rejected by the refrigerant.

Q2 = amount of heat absorbed by the refrigerant.
W = Net work done on the refrigerant.

Since the refrigerant undergoes a cycle, there is no change in internal energy, and the first law becomes

Q2 - Q1 = - W

Hence,

Q1 = Q2 + W
Means the heat rejected to the hot reservoir is larger than the heat extracted from the cold reservoir by the 
amount of work done.

The purpose of a refrigerator is to extract as much heat Q2 as possible from the cold reservoir

with the expenditure of as little work W as possible. The quantity that expresses the ability of a

refrigerator to do its job is therefore Q2/W, which is known as the coefficient of performance.

Hence, it is essential that work is always necessary to transfer heat from a cold to hot reservoir.

It would be beneficiary to mankind if no external supply of the energy were needed, but it must

certainly be admitted that experience indicates the contrary. This negative statement leads us

to the Clausius statement of the second law.

“It is impossible to construct a device that, operating in a cycle, will produce no effect 

other than the transfer of heat from a cooler to a hotter body”

Refrigerator, Clausius Statement of the Second Law:
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Carnot’s Theorem and Corollary:

Carnot’s Theorem: “No engine operating between two given reservoir can be more

efficient than a Carnot engine operating between the same two reservoir”

Imagine a Carnot engine R and any other engine I working between the same two

reservoir and adjusted so that they both deliver the same amount of work W.

Thus, 

Carnot engine R Any Other engine I

1 Absorb heat Q1 from the hot 

reservoir.

2 Perform work W. Perform work W.

3 Rejects heat Q1-W to the 

cold reservoir.

4
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Carnot’s Theorem and Corollary:

Hot Reservoir at θ1

Cold Reservoir at θ2

I

Q’1

W

Q’1- W

R
W

Q1

Q1- W
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Carnot’s Theorem and Corollary:
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Kelvin Temperature Scale:
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Kelvin Temperature Scale:
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Kelvin Temperature Scale:
Prof. J. K

. Baria

16



Kelvin Temperature Scale:

The absolute (Kelvin)
temperature scale is based on
fixing T of the triple point for
water (a specific T = 273.16 K
and P = 611.73 Pa where water
can coexist in the solid, liquid, and
gas phases in equilibrium).









≡

TPP
PKT 16.273

for an ideal gas constant-volume thermoscope

PTP – the pressure of the gas in a constant-
volume gas thermoscope at T = 273.16 K

absolute zero

T,K

PPTP

273.16

0
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Absolute Zero:
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Carnot Cycle of an ideal Gas. 
Equality of Ideal gas temperature and Kelvin Temperature:
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Carnot Cycle of an ideal Gas. 
Equality of Ideal gas temperature and Kelvin Temperature:
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Carnot Cycle of an ideal Gas. 
Equality of Ideal gas temperature and Kelvin Temperature:
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Clausius’ Theorem

Fig. 1.4 Generalized work diagram (i → f, any reversible

process; i → a, reversible adiabatic process, a → b,

reversible isothermal process, b → f, reversible adiabatic

process.)

Consider a reversible process

represented by the smooth curve i →

f on the generalized work diagram

shown in figure 1.4. The nature of the

system is immaterial. The dotted

curves through i and f, respectively,

represent portions of adiabatic

processes. Let us draw a curve a → b

representing an isothermal process

in such a way that the area under the

smooth curve if is equal to the area

under the zigzag path iabf. Then the

work done in traversing both paths is

the same or
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Clausius’ Theorem

Fig. 1.5 Generalized work diagram (Smooth closed curve = reversible cycle;

zigzag closed path = alternate reversible isothermal and adiabatic processes.)
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Clausius’ Theorem
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Entropy and the Mathematical Formulation of the Second Law
Let an initial equilibrium state of any thermo dynamic system be represented by the point i on any convenient diagram 
such as the generalized work diagram of Fig. 1.6. 

Fig. 1.6 Two reversible paths joining two

equilibrium state if a system.
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Entropy and the Mathematical Formulation of the Second Law
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Entropy of an Ideal Gas
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Entropy of an Ideal Gas
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Entropy of an Ideal Gas
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T-S Diagram
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T-S Diagram

Therefore during a reversible adiabatic process, the

entropy of a system remains constant or, in other words,

the system undergoes an isentropic process. An isentropic

process on a T-S diagram is obviously a vertical line. It is

therefore clear that the two isothermal and the two

adiabatic processes which go to make up a Carnot cycle

form a rectangle on a T-S diagram, no matter what the

working substance is. Only reversible processes may be

plotted on a T-S diagram since entropy has been defined

only for equilibrium states.

The T-S diagram is particularly convenient for representing reversible cycles. The closed

curve shown in figure 1.7 consisting of an upper portion R1 and a lower portion R2

represents a reversible engine cycle. The area under R1 (positive area) is equal to the heat

absorbed Q1 and the area under R2 (negative area) to the heat rejected Q2. The area inside

the closed curve is therefore Q1 – Q2 or W. Since the efficiency of the engine is 1 – (Q2/Q1),

it may be measured directly from the diagram.

Fig. 1.7 Reversible cycle on a T-S diagram.
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Entropy and Reversibility

The fact that the area under a curve on a T-S diagram is equal to the heat transferred in a reversible

process is of some importance to the mechanical engineer but of little interest to the theoretical

physicist.

In order to understand the physical meaning of entropy and its significance in the world of science, it is

necessary to study all the entropy changes that take place when a system undergoes a process.

If we calculate the entropy change of the system and add to this the entropy change of the local

surroundings, we obtain a quantity that is the sum of all the entropy changes brought about by this

particular process. We may call this the entropy change of the universe due to the process in question.

When a finites amount of heat is absorbed or rejected by a reservoir, extremely small

changes in the coordinates take place in every unit of mass. The entropy change of a unit of mass is

therefore very small. Since, however, the total mass of a reservoir is large; the total entropy change is

finite. Suppose that a reservoir is in contact with a system and that heat Q is absorbed by the reservoir

at the temperature T. The reservoir undergoes nondissipative changes determined entirely by the

quantity of head absorbed. Exactly the same changes in the reservoir would take place if the same

amount of heat Q were transferred reversibly. Hence the entropy change of the reservoir is Q/T.

Therefore, whenever a reservoir absorbs head Q at the temperature T from any system during any kind

of process, the entropy change of the reservoir is Q/T.
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Entropy and Reversibility
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Reversible Vs Irreversible processes

A reversible process is
defined as:
“A reversible process is a
process whose direction
can be "reversed" by
inducing infinitesimal
changes to some property
of the system via its
surroundings, while not
increasing entropy.”

Or
“A process that can be
reversed without leaving
any change on the
surroundings.”
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“A process that is not reversible is called an Irreversible Process.”
 In irreversible process, system passes through a series of non-

equilibrium states.
 It is difficult to locate properties on property diagram as they don’t 

have a unique value.
 When irreversible process is made to proceed in backward 

direction, it does not reach its original state.
 The system reaches a new state.
 Irreversible processes are usually represented by dotted lines.
The factors that cause a process to be Irreversible are :
1. Friction
2. Free Expansion
3. Mixing of two gases
4. Heat transfer between finite temperature difference
5. Electric resistance
6. Inelastic deformation
7. Chemical reactions
The presence of any of these effects makes a process irreversible.

Reversible Vs Irreversible processes
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Reversible Vs Irreversible processes
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Entropy and Irreversibility
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Entropy and Irreversibility

Processes Exhibiting External Mechanical Irreversibility.

(a) Those involving the isothermal dissipation of work through a system (which

remains unchanged) into internal energy of a reservoir, such as

1. Irregular stirring of a viscous liquid in contact with a reservoir.

2. Coming to rest of a rotating or vibrating liquid in contact with a reservoir.

3. Inelastic deformation of a solid in contact with a reservoir.

4. Transfer of electricity through a resistor in contact with a reservoir.

5. Magnetic hysteresis of a material in contact with a reservoir.
In the case of any process involving the isothermal transformation of work if 
through a system into internal energy of a reservoir, there is no entropy change 
of the system because the thermodynamic coordinates do not change. There is a 
flow of heat Q into the reservoir where Q = W. Since the reservoir absorbs Q units 
of heat at the temperature T, its entropy change is + Q/T or + W/T. The entropy 
change of the universe is therefore W/T, which is a positive quantity.
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Entropy and Irreversibility

Processes Exhibiting External Mechanical Irreversibility.
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Entropy and Irreversibility
Process exhibiting internal mechanical irreversibility.
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Entropy and Irreversibility
Processes Exhibiting External Thermal Irreversibility.
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Entropy and Irreversibility
Processes Exhibiting Chemical Irreversibility.
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Entropy and Irreversibility
Table 1.1. Entropy Change of the Universe Due to Natural Processes.

Type of 
irreversibility

Irreversible process
Entropy

change of
the system

Entropy
change of

the
local 

surroundings

Entropy
change
of the

universe

External
mechanical
irreversibility

Isothermal dissipation of 
work through a system into 
internal energy of a 
reservoir

0

Adiabatic dissipation of 
work into internal energy of 
a system

0

Internal
mechanical
irreversibility

Free expansion of an ideal 
gas 0

External
thermal
irreversibility

Transfer of heat through a 
medium from a hot to a 
cooler reservoir

0

Chemical
irreversibility

Diffusion of two dissimilar 
inert ideal gases 0
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Entropy and Nonequilibrium States
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Entropy and Nonequilibrium States

Figure 1.8. Process exhibiting internal thermal irreversibility.
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Entropy and Nonequilibrium States
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Principle of the Increase of Entropy
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Principle of the Increase of Entropy
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Principle of the Increase of Entropy
3. Let us now suppose that the system is not homogeneous and not of uniform temperature and

pressure and that it undergoes an irreversible adiabatic process in which mixing and chemical reaction

may take place. If we assume that the system may be subdivided into parts (each one infinitesimal, if

necessary) and that it is possible to ascribe a definite temperature, pressure, composition etc. to each

part, so that each part shall have a definite entropy depending on its coordinates, then we may define

the entropy of the whole system as the sum of the entropies of its parts. If we now assume that it is

possible to take each part back to its initial state by means of the reversible processes described in (1),

using the same reservoir for each part, then it follows that ∆S of the whole system is positive.

It should be emphasized that we have had to make two assumptions, namely, (1) that the entropy of a

system may be defined by sub dividing the system into parts and summing the entropies of these parts

and (2) that reversible processes may be found or imagined by which mixtures may be unmixed and

reactions may be caused to proceed in the opposite direction.

The behavior of the entropy of the universe as a result of any kind process may now be represented in

the following succinct manner.

∆S (universe) > 0

Where the equality sign refers to reversible processes and the inequality sign to irreversible processes.
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Application of the entropy principle
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Application of the entropy principle



Prof. J. K
. Baria

52

Entropy and Unavailable Energy
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Entropy and Unavailable Energy
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Entropy and Unavailable Energy

Now suppose that it is desired to produce exactly the same changes in the system and the local surroundings that

resulted from the performance of the irreversible process, but by reversible processes only. This would require, in

general, the services of Carnot engines and refrigerators, which in turn, would have to be operated in conjunction with

an auxiliary mechanical device may be considered, as usual to be either a suspended weight or a compressed spring. For

the auxiliary reservoir let us choose the one whose temperature is the lowest say, T0, These constitute the auxiliary

surroundings. With the aid suitable Carnot engines and refrigerators all operating in cycles in conjunction with the

auxiliary surroundings, it is now possible to produce in the system and the local surroundings by reversible processes

only, the same changes that were formerly brought about by the irreversible process. If this is done, the entropy change

of the system and the local surroundings is the same as before since they have gone from the same initial states to the

same final states. The auxiliary surroundings, however, must undergo an equal and opposite entropy change, because

the net entropy change of the universe during reversible process is zero.

Since the entropy change of the system and local surroundings is positive, the entropy change of the auxiliary surroundings

is negative. Therefore the reservoir at T0 must have rejected a certain amount of heat, say E. since no extra energy has

appeared in the system and local surroundings, the energy E must have been transformed into work on the auxiliary

mechanical device. We have the result therefore that, when the same changes which were formerly produced in a system

and local surroundings by an irreversible process are brought about reversibly, an amount of energy E leaves an auxiliary

reservoir at T0 in the form of heat, and appears in the form of work on an auxiliary mechanical device. In other words,

energy E is converted from a form in which it was completely unavailable for work into a form in which it is completely

available for work. Since the original process was not performed reversibly, the energy E was not converted into work,

and therefore E is the energy that is rendered unavailable for work because of the performance of the irreversible

process.
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Entropy and Unavailable Energy
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Entropy and Disorder
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Entropy and Disorder



Prof. J. K
. Baria

58

Entropy and Disorder
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Entropy and Direction. Absolute Entropy

The second law of thermodynamics provides an answer to the question that is not contained within the

scope of the first law, namely, “In what direction does a process take place?” The answer is that a process

always taken place in such a direction as to cause an increase in the entropy of the universe. In the case of

an isolated system it is the entropy of the system that tends to increase. To find out, therefore, the

equilibrium state of an isolated system it is necessary merely to express the entropy as a function of

certain coordinates and to apply the usual rules of calculus to render the function a maximum. When the

system is not isolated but instead, let us say, is maintained at constant temperature and pressure, there

are other entropy changes to be taken into account. It will be shown later, however, that there exists

another function, known as the Gibbs function, referring to the system alone whose behavior determines

equilibrium under these conditions.

In practical applications of thermodynamics one is interested only in the amount by which the entropy of 

a system changes in going from an initial to a final state. In cases where it is necessary to perform many 

such calculations with the minimum of effort, for example, in steam engineering, in problems in 

refrigeration and gas liquefaction, etc., it is found expedient to set up an entropy table in which the 

“entropy” of the system in thousands of different states is represented by appropriate numbers. This is 

done by assigning the value zero to the entropy of the system in an arbitrarily chosen standard state and 

calculating the entropy change from this standard state to all other states. When this is done, it is 

understood that one value of what is listed as “the entropy” has no meaning, but that the difference between 

two values is actually the entropy change.
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Entropy and Direction. Absolute Entropy

It is a very interesting and also a very important question in physics as to

whether there exists an absolute standard state of a system in which the entropy

is really zero, so that the number obtained by calculating the entropy change

from the zero state to any other represents the “absolute entropy” of the system.

It was first suggested by Planck that the entropy of a single crystal of a pure

element at the absolute zero of temperature should be taken to be zero. Zero

entropy, however, has statistical implications implying in a rough way, the

absence of all molecular, atomic, electronic and nuclear disorder. Before any

meaning can be attached to the idea of zero entropy, one must know all the

factors that contribute to the disorder of a system.

An adequate discussion requires the application of quantum ideas to statistical 

mechanics.
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First order transition. Clapeyron’s Equaton

In the familiar phase transition – melting, vaporization and sublimation as well as in some

less familiar phase transitions such as from one crystal modification to another, the

temperature and pressure remain constant while the entropy and volume change. Consider

n0 moles of material in phase i with molar entropy s(i) and molar volume 𝑣𝑣 (i) cc. Both s(i)

and 𝑣𝑣 (i) are functions of T and P and hence remain constant during the phase transition

which ends with the material in phase f with molar entropy s (f) and molar volume 𝑣𝑣 (i). The

different phases are indicated by superscripts in order to reserve subscripts to specify

different states of the same phase or different substances. Let 𝑥𝑥 equal the fraction of the

initial phase which has been transformed into the final phase at any moment. Then the

entropy and volume of the mixture at any moment, S and V, respectively are given by

𝑆𝑆 = 𝑛𝑛0 1 − 𝑥𝑥 𝑠𝑠(𝑖𝑖) + 𝑛𝑛0 𝑥𝑥 𝑠𝑠(𝑓𝑓)

𝑉𝑉 = 𝑛𝑛0 1 − 𝑥𝑥 𝑠𝑠(𝑖𝑖) + 𝑛𝑛0 𝑥𝑥 𝑠𝑠(𝑓𝑓)

And S and V are seen to be linear functions of 𝑥𝑥

If the phase transition takes place reversibly, the heat (commonly known as a latent heat)

transferred per mole is given by
𝑙𝑙 = 𝑇𝑇 𝑠𝑠(𝑓𝑓) − 𝑠𝑠(𝑖𝑖)
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First order transition. Clapeyron’s Equaton

Figure 1.11. First order and second order 

phase transition.

The existence of a latent heat, therefore, means that

there is a change of entropy. Since

𝑑𝑑𝑑𝑑 = −𝑠𝑠 𝑑𝑑𝑇𝑇 + 𝑣𝑣 𝑑𝑑𝑑𝑑

𝑠𝑠 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃

And 𝑣𝑣 = − 𝜕𝜕𝜕𝜕
𝜕𝜕𝑃𝑃 𝜕𝜕

We may characterize the familiar phase transition by

either of the following equivalent statements.

1. There are changes of entropy and volume

2. The first order derivatives of the Gibbs function

Change discontinuosly.

Any phase change that satisfies these
requirements is known as a phase change of the
first order. First order transitions are
represented crudely by the three graphs on the
left hand side of fig. 1.11 The changes that take
place according to the 3 graphs on the right hand
side of Fig 1.11 are characteristics of a phase
change of the second order, since as we shall see
later, in such a phase change the second order
derivatives of the Gibbs function change
discontinuously.
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First order transition. Clapeyron’s Equaton

In the case of a first order phase transition, consider the reversible 

isothermal isobaric change of 1 mole of substance from phase i to phase 

f. using the first T ds equation.

𝑇𝑇 𝑑𝑑𝑠𝑠 = 𝐶𝐶𝑣𝑣 𝑑𝑑𝑇𝑇 + 𝑇𝑇 𝜕𝜕𝑃𝑃
𝜕𝜕𝜕𝜕 𝑉𝑉

𝑑𝑑𝑣𝑣,

And integrating over the whole change of phase, remembering that (𝜕𝜕P/𝜕𝜕T)v

is independent of v, we get.

𝑇𝑇 𝑠𝑠(𝑓𝑓) − 𝑠𝑠(𝑖𝑖) = 𝑇𝑇 𝑑𝑑𝑃𝑃
𝑑𝑑𝜕𝜕

𝑣𝑣(𝑓𝑓) − 𝑣𝑣 𝑖𝑖 ,

The lefthand side of this equation is latent heat per mole,

∴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇 =

𝑙𝑙
𝑇𝑇 𝑣𝑣(𝑓𝑓) − 𝑣𝑣(𝑖𝑖)

This equation is known as Clapeyron’s equation, applies to any first-order

change of phase transition that takes place at constant T and P.
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First order transition. Clapeyron’s Equaton

It is instructive to derive Clapeyron’s equation in another way. We know that

the Gibbs function remains constant during a reversible process taking place

at constant temperature and pressure.

Hence for a change of phase at T and P.

𝑑𝑑(𝑖𝑖) = 𝑑𝑑(𝑓𝑓)

and, for a phase change at 𝑇𝑇 + 𝑑𝑑𝑇𝑇 and 𝑑𝑑 + 𝑑𝑑𝑑𝑑.

𝑑𝑑(𝑖𝑖) + 𝑑𝑑𝑑𝑑(𝑖𝑖) = 𝑑𝑑(𝑓𝑓) + 𝑑𝑑𝑑𝑑(𝑓𝑓)

Since, 𝑑𝑑(𝑖𝑖) = 𝑑𝑑(𝑓𝑓), we get 𝑑𝑑𝑑𝑑(𝑖𝑖) = 𝑑𝑑𝑑𝑑(𝑓𝑓);

− 𝑠𝑠(𝑖𝑖) 𝑑𝑑𝑇𝑇 + 𝑣𝑣(𝑖𝑖) 𝑑𝑑𝑑𝑑 = −𝑠𝑠(𝑓𝑓) 𝑑𝑑𝑇𝑇 + 𝑣𝑣(𝑓𝑓) 𝑑𝑑𝑑𝑑

Therefore 𝑑𝑑𝑃𝑃
𝑑𝑑𝜕𝜕

= 𝑠𝑠(𝑓𝑓)− 𝑠𝑠(𝑖𝑖)

𝑣𝑣(𝑓𝑓)− 𝑣𝑣(𝑖𝑖)

And, finally,

∴
𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇 =

𝑙𝑙
𝑇𝑇 𝑣𝑣(𝑓𝑓) − 𝑣𝑣(𝑖𝑖)
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Second order Transition. Ehrenfest’s Equations

 In fig. 1.11 (right hand side) a second order phase transition is seen to be one that takes

place at constant temperature and pressure with no change of entropy or volume.

 The first order derivatives of the Gibbs function therefore change continuously as the

substance passes from one phase to the other. There are only a few transitions that seem to

satisfy these requirements, and even in these cases it is still somewhat doubtful as to

whether, for example there is no latent heat or merely an extremely small latent heat.

 The following processes are among those which are generally regarded by most physicists

as second order phase transitions:

1. A ferromagnetic material such as iron or nickel becomes para magnetic at the Curie point.

2. A superconducting metal becomes an ordinary conductor in the absence of a magnetic field

at a definite transition temperature.

3. Certain alloys and chemical compounds undergo an “order-dis-order” transition at a definite

temperature.

4. Liquid helium II become liquid helium I at various temperature and pressures, such as the λ

point where T = 2.190K and P = 38.65 mm. 
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Second order Transition. Ehrenfest’s Equations
In all these processes, one or more of the quantities𝐶𝐶𝑃𝑃, 𝑘𝑘, and 𝛽𝛽 show discontinuous changes during

the phase transition. In some cases, the changes are very small, leading us to believe that a

discontinuous change in all three quantities is a necessary property of a second order transition.

Since,

𝐶𝐶𝑃𝑃
𝜕𝜕

= 𝜕𝜕𝑠𝑠
𝜕𝜕𝜕𝜕 𝑃𝑃

= 𝜕𝜕
𝜕𝜕𝜕𝜕

− 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑃𝑃 𝑃𝑃

= − 𝜕𝜕2𝜕𝜕
𝜕𝜕𝜕𝜕2

𝑘𝑘𝑣𝑣 = −
𝜕𝜕𝑣𝑣
𝜕𝜕𝑑𝑑

𝜕𝜕
= −

𝜕𝜕
𝜕𝜕𝑇𝑇

𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑

𝜕𝜕 𝜕𝜕

= −
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑑𝑑2

𝛽𝛽𝑣𝑣 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑇𝑇

𝑃𝑃
=

𝜕𝜕
𝜕𝜕𝑇𝑇

𝜕𝜕𝑑𝑑
𝜕𝜕𝑑𝑑

𝜕𝜕 𝑃𝑃

=
𝜕𝜕2𝑑𝑑
𝜕𝜕𝑇𝑇 𝜕𝜕𝑑𝑑

It follows that second order transition is characterized by discontinuous changes in the second order

derivatives of the Gibbs function. We may find relations between the changes in these quantities and

the pressure and temperature as follows: Indicating the two phases in question by the superscripts i

and f, we have

𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑓𝑓) ( 𝑎𝑎𝑎𝑎 𝑇𝑇,𝑑𝑑)

𝑠𝑠(𝑖𝑖) + 𝑑𝑑𝑠𝑠(𝑖𝑖) = 𝑠𝑠(𝑓𝑓) + 𝑑𝑑𝑠𝑠(𝑓𝑓) (𝑎𝑎𝑎𝑎 𝑇𝑇 + 𝑑𝑑𝑇𝑇,𝑑𝑑 + 𝑑𝑑𝑑𝑑)

∴ 𝑇𝑇𝑠𝑠(𝑖𝑖) = 𝑇𝑇𝑠𝑠(𝑓𝑓)
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Second order Transition. Ehrenfest’s Equations
Using the second T ds equation we get

𝑐𝑐𝑝𝑝
(𝑖𝑖) 𝑑𝑑𝑇𝑇 − 𝑇𝑇 𝑣𝑣 𝛽𝛽 𝑖𝑖 𝑑𝑑 𝑑𝑑 = 𝑐𝑐𝑝𝑝

(𝑓𝑓) 𝑑𝑑𝑇𝑇 − 𝑇𝑇𝑣𝑣 𝛽𝛽(𝑓𝑓) 𝑑𝑑𝑑𝑑

And, finally

𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇

=
𝐶𝐶𝑃𝑃

(𝑓𝑓) − 𝐶𝐶𝑝𝑝
𝑖𝑖

𝑇𝑇𝑣𝑣 𝛽𝛽(𝑓𝑓) − 𝛽𝛽(𝑖𝑖)

For the same phase transition we have also,

𝑣𝑣(𝑖𝑖) = 𝑣𝑣(𝑓𝑓) ( 𝑎𝑎𝑎𝑎 𝑇𝑇,𝑑𝑑)

𝑣𝑣(𝑖𝑖) + 𝑑𝑑𝑣𝑣(𝑖𝑖) = 𝑣𝑣(𝑓𝑓) + 𝑑𝑑𝑣𝑣(𝑓𝑓) (𝑎𝑎𝑎𝑎 𝑇𝑇 + 𝑑𝑑𝑇𝑇,𝑑𝑑 + 𝑑𝑑𝑑𝑑)

∴ 𝑇𝑇𝑣𝑣(𝑖𝑖) = 𝑇𝑇𝑣𝑣(𝑓𝑓)

𝑑𝑑𝑣𝑣 = 𝜕𝜕𝑣𝑣/𝜕𝜕𝑑𝑑 𝑃𝑃 𝑑𝑑𝑇𝑇 + 𝜕𝜕𝑣𝑣/𝜕𝜕𝑑𝑑 𝜕𝜕 𝑑𝑑𝑑𝑑,𝑤𝑤𝑤𝑤 ℎ𝑎𝑎𝑣𝑣𝑤𝑤

𝑣𝑣𝛽𝛽(𝑖𝑖)𝑑𝑑𝑇𝑇 − 𝑣𝑣𝑘𝑘(𝑖𝑖)𝑑𝑑𝑑𝑑 = 𝑣𝑣𝛽𝛽(𝑓𝑓) 𝑑𝑑𝑇𝑇 − 𝑣𝑣 𝑘𝑘(𝑓𝑓) 𝑑𝑑𝑑𝑑

OR 

𝑑𝑑𝑃𝑃
𝑑𝑑𝜕𝜕

= 𝛽𝛽
(𝑓𝑓)− 𝛽𝛽 𝑖𝑖

𝑘𝑘 𝑓𝑓 − 𝐾𝐾(𝑖𝑖)

These two equations are known as Ehrenfest’s equations
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